Recently Viewed

New

Potential Functions of Random Walks in ℤ with Infinite Variance: Estimates and Applications by Kôhei Uchiyama 9783031410192

No reviews yet Write a Review
Booksplease Price: $116.93

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9783031410192
Available from Booksplease!
Availability: Usually dispatched within 4 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

This book studies the potential functions of one-dimensional recurrent random walks on the lattice of integers with step distribution of infinite variance. The central focus is on obtaining reasonably nice estimates of the potential function. These estimates are then applied to various situations, yielding precise asymptotic results on, among other things, hitting probabilities of finite sets, overshoot distributions, Green functions on long finite intervals and the half-line, and absorption probabilities of two-sided exit problems.

The potential function of a random walk is a central object in fluctuation theory. If the variance of the step distribution is finite, the potential function has a simple asymptotic form, which enables the theory of recurrent random walks to be described in a unified way with rather explicit formulae. On the other hand, if the variance is infinite, the potential function behaves in a wide range of ways depending on the step distribution, which the asymptotic behaviour of many functionals of the random walk closely reflects.

In the case when the step distribution is attracted to a strictly stable law, aspects of the random walk have been intensively studied and remarkable results have been established by many authors. However, these results generally do not involve the potential function, and important questions still need to be answered. In the case where the random walk is relatively stable, or if one tail of the step distribution is negligible in comparison to the other on average, there has been much less work. Some of these unsettled problems have scarcely been addressed in the last half-century. As revealed in this treatise, the potential function often turns out to play a significant role in their resolution.

Aimed at advanced graduate students specialising in probability theory, this book will also be of interest to researchers and engineers working with random walks and stochastic systems. 



Book Information
ISBN 9783031410192
Author Kôhei Uchiyama
Format Paperback
Page Count 276
Imprint Springer International Publishing AG
Publisher Springer International Publishing AG

Reviews

No reviews yet Write a Review

Booksplease  Reviews


J - United Kingdom

Fast and efficient way to choose and receive books

This is my second experience using Booksplease. Both orders dealt with very quickly and despatched. Now waiting for my next read to drop through the letterbox.

J - United Kingdom

T - United States

Will definitely use again!

Great experience and I have zero concerns. They communicated through the shipping process and if there was any hiccups in it, they let me know. Books arrived in perfect condition as well as being fairly priced. 10/10 recommend. I will definitely shop here again!

T - United States

R - Spain

The shipping was just superior

The shipping was just superior; not even one of the books was in contact with the shipping box -anywhere-, not even a corner or the bottom, so all the books arrived in perfect condition. The international shipping took around 2 weeks, so pretty great too.

R - Spain

J - United Kingdom

Found a hard to get book…

Finding a hard to get book on Booksplease and with it not being an over inflated price was great. Ordering was really easy with updates on despatch. The book was packaged well and in great condition. I will certainly use them again.

J - United Kingdom