Description
This book describes the use of machine learning techniques to build predictive models of uncertainty with application to hydrological models, focusing mainly on the development and testing of two different models. The first focuses on parameter uncertainty analysis by emulating the results of Monte Carlo simulation of hydrological models using efficient machine learning techniques. The second method aims at modelling uncertainty by building an ensemble of specialized machine learning models on the basis of past hydrological model's performance. The book then demonstrates the capacity of machine learning techniques for building accurate and efficient predictive models of uncertainty.
About the Author
Durga Lal Shrestha is a researcher in the Hydroinformatics and Knowledge Management Department of the UNESCO-IHE Institute for Water Education, Netherlands. He received his Masters degree in hydroinformatics from the UNESCO-IHE Institute for Water Education in 2002. His research interests include hydrological modelling, uncertainty analysis, global and evolutionary optimisation, machine learning techniques and their applications in water based systems.
Book Information
ISBN 9780415565981
Author Durga Lal Shrestha
Format Paperback
Page Count 222
Imprint CRC Press
Publisher Taylor & Francis Ltd
Weight(grams) 408g