Recently Viewed

New

Sufficient Dimension Reduction: Methods and Applications with R Bing Li 9781498704472

No reviews yet Write a Review
RRP: £86.99
Booksplease Price: £80.16
Booksplease saves you 8%

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9781498704472
MPN:
9781498704472
Available from Booksplease!
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Availability: Usually dispatched within 5 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Sufficient dimension reduction is a rapidly developing research field that has wide applications in regression diagnostics, data visualization, machine learning, genomics, image processing, pattern recognition, and medicine, because they are fields that produce large datasets with a large number of variables. Sufficient Dimension Reduction: Methods and Applications with R introduces the basic theories and the main methodologies, provides practical and easy-to-use algorithms and computer codes to implement these methodologies, and surveys the recent advances at the frontiers of this field.

Features

  • Provides comprehensive coverage of this emerging research field.
  • Synthesizes a wide variety of dimension reduction methods under a few unifying principles such as projection in Hilbert spaces, kernel mapping, and von Mises expansion.
  • Reflects most recent advances such as nonlinear sufficient dimension reduction, dimension folding for tensorial data, as well as sufficient dimension reduction for functional data.
  • Includes a set of computer codes written in R that are easily implemented by the readers.
  • Uses real data sets available online to illustrate the usage and power of the described methods.

Sufficient dimension reduction has undergone momentous development in recent years, partly due to the increased demands for techniques to process high-dimensional data, a hallmark of our age of Big Data. This book will serve as the perfect entry into the field for the beginning researchers or a handy reference for the advanced ones.

The author

Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.



About the Author

Bing Li obtained his Ph.D. from the University of Chicago. He is currently a Professor of Statistics at the Pennsylvania State University. His research interests cover sufficient dimension reduction, statistical graphical models, functional data analysis, machine learning, estimating equations and quasilikelihood, and robust statistics. He is a fellow of the Institute of Mathematical Statistics and the American Statistical Association. He is an Associate Editor for The Annals of Statistics and the Journal of the American Statistical Association.



Reviews

"...Sufficient Dimension Reduction: Methods and Applications with R is a thorough overview of the key ideas and a detailed reference for advanced researchers...Professor Li gives careful discussions of the relevant details, rendering the text impressively self-contained. But as one would expect from a book based on graduate course notes, this manuscript is mainly accessible to those with advanced training in theoretical statistics...This book serves as an excellent introduction to the field of sufficient dimension reduction, and the depth of presentation and theoretical rigor are impressive. It would, of course, naturally serve as the basis for a deep graduate course, and provides a substantial foundation for anyone hoping to contribute in this thriving area."
- Daniel J. McDonald, JASA 2020





Book Information
ISBN 9781498704472
Author Bing Li
Format Hardback
Page Count 284
Imprint Chapman & Hall/CRC
Publisher Taylor & Francis Inc
Weight(grams) 620g

Reviews

No reviews yet Write a Review

Booksplease  Reviews