Description
The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter as well as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to H2 and H-inf controllers and system robustness.
Stochastic Processes, Estimation, and Control is divided into three related sections. First, the authors present the concepts of probability theory, random variables, and stochastic processes, which lead to the topics of expectation, conditional expectation, and discrete-time estimation and the Kalman filter. After establishing this foundation, stochastic calculus and continuous-time estimation are introduced. Finally, dynamic programming for both discrete-time and continuous-time systems leads to the solution of optimal stochastic control problems, resulting in controllers with significant practical application.
Book Information
ISBN 9781611971958
Author Jason L. Speyer
Format Hardback
Page Count 397
Imprint Society for Industrial & Applied Mathematics,U.S.
Publisher Society for Industrial & Applied Mathematics,U.S.
Weight(grams) 872g