Description
Scalable Video on Demand: Adaptive Internet-based Distribution examines how current video compression and streaming can be used to deliver high-quality applications over the Internet. In addition to analysing the problems of client heterogeneity and the absence of Quality of Service in the Internet, this book:
- assesses existing products and encoding formats;
- presents new algorithms and protocols for optimised on-line video streaming architectures;
- includes real-world application examples and experiments;
- sets out a practical 'toolkit' for Dynamically Reconfigurable Multimedia Distribution Systems.
Written by an expert in the field of video distribution, Scalable Video on Demand: Adaptive Internet-based Distribution provides a novel approach to the design and implementation of Video-on-Demand systems for Software Engineers and researchers. It will also be useful for graduate students following Electronic Engineering and Computer Science courses.
About the Author
Michael Zink is currently a postdoctoral fellow in the Computer Science Department at the University of Massachusetts in Amherst. Before, he worked as a researcher at the Multimedia Communications Lab at Darmstadt University of Technology. He works in the fields of sensor networks and distribution networks for high bandwidth data. Further research interests are in wide-area multimedia distribution for wired and wireless environments and network protocols. He is one of the developers of the KOMSSYS streaming platform. He received his Diploma (MSc) from Darmstadt University of Technology in 1997. From 1997 to 1998 he was employed as guest researcher at the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, where he developed an MPLS testbed. In 2003, he received his PhD degree (Dr.-Ing.) from Darmstadt University of Technology, his thesis was on "Scalable Internet Video-on-Demand Systems".
Book Information
ISBN 9780470022689
Author Michael Zink
Format Hardback
Page Count 296
Imprint John Wiley & Sons Inc
Publisher John Wiley & Sons Inc
Weight(grams) 553g
Dimensions(mm) 235mm * 158mm * 21mm