Description
Useful but hard-to-find results enrich this introduction to the analytic study of random walks on infinite graphs.
About the Author
Martin T. Barlow is Professor in the Mathematics Department at the University of British Columbia. He was one of the founders of the mathematical theory of diffusions on fractals, and more recently has worked on random walks on random graphs. He gave a talk at the International Congress of Mathematicians (ICM) in 1990, and was elected a Fellow of the Royal Society of Canada in 1998 and a Fellow of the Royal Society in 2005. He is the winner of the Jeffrey-Williams Prize of the Canadian Mathematical Society and the CRM-Fields-PIMS Prize of the three Canadian mathematics institutes (the Centre de recherches mathematiques, the Fields Institute, and the Pacific Institute for the Mathematical Sciences).
Reviews
'This book, written with great care, is a comprehensive course on random walks on graphs, with a focus on the relation between rough geometric properties of the underlying graph and the asymptotic behavior of the random walk on it. It is accessible to graduate students but may also serve as a good reference for researchers. It contains the usual material about random walks on graphs and its connections to discrete potential theory and electrical resistance (Chapters 1, 2 and 3). The heart of the book is then devoted to the study of the heat kernel (Chapters 4, 5 and 6). The author develops sufficient conditions under which sub-Gaussian or Gaussian bounds for the heat kernel hold (both on-diagonal and off diagonal; both upper and lower bounds).' Nicolas Curien, Mathematical Review
'The book under review delineates very thoroughly the general theory of random walks on weighted graphs. The author's expertise in both probability and analysis is apparent in the exposition and the elegant proofs depicted in the book.' Eviatar B. Procaccia, Bulletin of the American Mathematical Society
Book Information
ISBN 9781107674424
Author Martin T. Barlow
Format Paperback
Page Count 236
Imprint Cambridge University Press
Publisher Cambridge University Press
Weight(grams) 350g
Dimensions(mm) 226mm * 152mm * 15mm