Recently Viewed

New

Progress in Inverse Spectral Geometry by Stig I. Andersson 9783034898355

No reviews yet Write a Review
Booksplease Price: £45.92

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9783034898355
Available from Booksplease!
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Availability: Usually dispatched within 4 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x,O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e-; namely, u(*, t) = V(t)uoU* Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt,E* (R)E), locally given by 00 K(x,y; t) = L>-IAk(~k (R) 'Pk)(X,y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for- malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

Book Information
ISBN 9783034898355
Author Stig I. Andersson
Format Paperback
Page Count 197
Imprint Springer Basel
Publisher Springer Basel
Weight(grams) 332g

Reviews

No reviews yet Write a Review

Booksplease  Reviews