Recently Viewed

New

Principles of Quantum Scattering Theory by Dzevad Belkic

No reviews yet Write a Review
RRP: £215.00
Booksplease Price: £186.35
Booksplease saves you

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9780750304962
MPN:
9780750304962

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Scattering is one of the most powerful methods used to study the structure of matter, and many of the most important breakthroughs in physics have been made by means of scattering. Nearly a century has passed since the first investigations in this field, and the work undertaken since then has resulted in a rich literature encompassing both experimental and theoretical results.

In scattering, one customarily studies collisions among nuclear, sub-nuclear, atomic or molecular particles, and as these are intrinsically quantum systems, it is logical that quantum mechanics is used as the basis for modern scattering theory. In Principles of Quantum Scattering Theory, the author judiciously combines physical intuition and mathematical rigour to present various selected principles of quantum scattering theory. As always in physics, experiment should be used to ultimately validate physical and mathematical modelling, and the author presents a number of exemplary illustrations, comparing theoretical and experimental cross sections in a selection of major inelastic ion-atom collisions at high non-relativistic energies.

Quantum scattering theory, one of the most beautiful theories in physics, is also very rich in mathematics. Principles of Quantum Scattering Theory is intended primarily for graduate physics students, but also for non-specialist physicists for whom the clarity of exposition should aid comprehension of these mathematical complexities.



About the Author
Dzevad Belki? is a theoretical physicist. He is Professor of Mathematical Radiation Physics at Karolinska Institute in Stockholm, Sweden. His current research activities are in atomic collision physics, radiation physics, radiobiology, magnetic resonance physics and mathematical physics. In atomic collision physics, he has worked on many problems including major challenges such as the theory of charge exchange and ionization at high non-relativistic energies. Inter alia he used distorted wave methods, paying special attention to treatments with correct boundary conditions for scattering particles which interact through Coulomb potentials., In radiation physics, Professor Belki? has worked on the passage of fast electrons and multiply charged ions through tissue as needed in radiation therapy in medicine. Here he has employed both deterministic methods through the Boltzmann equation and stochastic simulations via Monte Carlo computations. In radiobiology, he has worked on mathematical modelling for cell survival, and has focused on mechanistic modelling by including the main pathways for survival of cells under irradiation during radiotherapy., In magnetic resonance physics, Professor Belki? has worked on nuclear magnetic resonance in medicine where he focused on high-resolution parametric signal processors which go beyond the conventional shape estimations of spectra. In mathematical physics, he has worked on many problems including the derivation of analytical expressions for scattering integrals or bound-free form factors, for rational response functions in signal processing, for coupling parameters in the nearest neighbour approximation which is one of the most frequently used methods in physics and chemistry, etc., He has published more than 150 scientific publications which have received over 2000 citations. He has received a number of international awards including the triple Nobel grantee status for research grants in atomic collision theory from the Royal Swedish Academy of Sciences as approved by the Nobel Committee for Physics.

Reviews

"...presents a thorough overview of the main aspects of the subject...highly recommended...important acquisition for defense libraries and other science and technology libraries..."
E-Streams, Volume 8, no. 8, 2005
"Never have the principles of scattering theory been formulated and applied to such a breadth of problems from basic physics to condenced matter, bio, chemical and medical physics. Computational strategies emphasize both deterministic stochastic methods adding to the value of the book".

-- Erkki Brandas

"This is an excellent book."

-- Professor Ivan Mancev





Book Information
ISBN 9780750304962
Author Dzevad Belkic
Format Hardback
Page Count 392
Imprint Institute of Physics Publishing
Publisher Taylor & Francis Ltd
Weight(grams) 793g

Reviews

No reviews yet Write a Review

Booksplease  Reviews


J - United Kingdom

Fast and efficient way to choose and receive books

This is my second experience using Booksplease. Both orders dealt with very quickly and despatched. Now waiting for my next read to drop through the letterbox.

J - United Kingdom

T - United States

Will definitely use again!

Great experience and I have zero concerns. They communicated through the shipping process and if there was any hiccups in it, they let me know. Books arrived in perfect condition as well as being fairly priced. 10/10 recommend. I will definitely shop here again!

T - United States

R - Spain

The shipping was just superior

The shipping was just superior; not even one of the books was in contact with the shipping box -anywhere-, not even a corner or the bottom, so all the books arrived in perfect condition. The international shipping took around 2 weeks, so pretty great too.

R - Spain

J - United Kingdom

Found a hard to get book…

Finding a hard to get book on Booksplease and with it not being an over inflated price was great. Ordering was really easy with updates on despatch. The book was packaged well and in great condition. I will certainly use them again.

J - United Kingdom