Description
Topics include:
* an intuitive introduction to ergodic theory
* an introduction to the basic notions, constructions, and standard examples of topological dynamical systems
* Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand-Naimark theorem
* measure-preserving dynamical systems
* von Neumann's Mean Ergodic Theorem and Birkhoff's Pointwise Ergodic Theorem
* strongly and weakly mixing systems
* an examination of notions of isomorphism for measure-preserving systems
* Markov operators, and the related concept of a factor of a measure preserving system
* compact groups and semigroups, and a powerful tool in their study, the Jacobs-de Leeuw-Glicksberg decomposition
* an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg's Correspondence Principle, theorems of Roth and Furstenberg-Sarkoezy)
Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory
About the Author
Tanja Eisner is a Professor of Mathematics at the University of Leipzig. Balint Farkas is a Professor of Mathematics at the University of Wuppertal. Markus Haase is a Professor of Mathematics at the Delft Institute of Applied Mathematics. Rainer Nagel is a Professor of Mathematics at the University of Tubingen.
Reviews
"This book can serve as a good introduction to an active research area. Each chapter ends with a nice list of exercises. At the end of the book complementary material can be found on measure theory, functional analysis, operator theory, the Riesz representation theorem, and more. This makes the book self-contained. The book has the potential to become a basic reference in this field." (Idris Assani, Mathematical Reviews, January, 2017)
Book Information
ISBN 9783319168975
Author Tanja Eisner
Format Hardback
Page Count 628
Imprint Springer International Publishing AG
Publisher Springer International Publishing AG