Description
Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bezout's theorem as well as the construction of projective space. The structure of the unit group of the integers modulo a prime explains RSA encryption, Pollard's method of factorization, Diffie-Hellman key exchange, and ElGamal encryption, while the group of points of an elliptic curve over a finite field motivates Lenstra's elliptic curve factorization method and ECC.
The only real prerequisite for this book is a course on one-variable calculus; other necessary mathematical topics are introduced on-the-fly. Numerous exercises further guide the exploration.
About the Author
Thomas R. Shemanske, Dartmouth College, Hanover, NH.
Reviews
The main objective of this book, which is mainly aimed at undergraduate students, is to explain the arithmetic of elliptic curves defined over finite fields and to show how those curves can be used in cryptography. In order to do that, the author purposely avoids complex mathematical demonstrations and, instead, presents the concepts in a more descriptive way, suggesting some topics for further exploration by the reader." - Victor Gayoso Martiinez, Mathematical Reviews
Book Information
ISBN 9781470435820
Author Thomas R. Shemanske
Format Paperback
Page Count 252
Imprint American Mathematical Society
Publisher American Mathematical Society
Weight(grams) 320g