Recently Viewed

New

Mathematical Perspectives on Neural Networks by Paul Smolensky

No reviews yet Write a Review
RRP: £55.99
Booksplease Price: £50.31
Booksplease saves you 10%

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9781138876293
MPN:
9781138876293
Available from Booksplease!
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Availability: Usually dispatched within 5 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Recent years have seen an explosion of new mathematical results on learning and processing in neural networks. This body of results rests on a breadth of mathematical background which even few specialists possess. In a format intermediate between a textbook and a collection of research articles, this book has been assembled to present a sample of these results, and to fill in the necessary background, in such areas as computability theory, computational complexity theory, the theory of analog computation, stochastic processes, dynamical systems, control theory, time-series analysis, Bayesian analysis, regularization theory, information theory, computational learning theory, and mathematical statistics.

Mathematical models of neural networks display an amazing richness and diversity. Neural networks can be formally modeled as computational systems, as physical or dynamical systems, and as statistical analyzers. Within each of these three broad perspectives, there are a number of particular approaches. For each of 16 particular mathematical perspectives on neural networks, the contributing authors provide introductions to the background mathematics, and address questions such as:
* Exactly what mathematical systems are used to model neural networks from the given perspective?
* What formal questions about neural networks can then be addressed?
* What are typical results that can be obtained? and
* What are the outstanding open problems?

A distinctive feature of this volume is that for each perspective presented in one of the contributed chapters, the first editor has provided a moderately detailed summary of the formal results and the requisite mathematical concepts. These summaries are presented in four chapters that tie together the 16 contributed chapters: three develop a coherent view of the three general perspectives -- computational, dynamical, and statistical; the other assembles these three perspectives into a unified overview of the neural networks field.



About the Author
Paul Smolensky, Michael C. Mozer, David E. Rumelhart

Reviews

Although the material is advanced and technical, the volume has a "multilayer" structure including a general overview, and there are overviews of each of the main parts (including summary tables of key results). These surveys, all written by Smolensky (John Hopkins University), provide an excellent introduction to the papers and their context, making the material accessible to upper-division undergraduates, graduate students, or faculty.
-CHOICE





Book Information
ISBN 9781138876293
Author Paul Smolensky
Format Paperback
Page Count 878
Imprint Psychology Press Ltd
Publisher Taylor & Francis Ltd
Weight(grams) 1111g

Reviews

No reviews yet Write a Review

Booksplease  Reviews