Description
Reviews
"I find this to be both the best introduction to symplectic geometry as well as a model for how to introduce any field of study. ... one feels the hand of a master in the text's homework sets: concrete, illustrative, and enhancing the material presented. ... For an upper-level undergraduate or beginning graduate student, Lectures on Symplectic Geometry remains, in my opinion, an ideal starting point into an exciting, active and growing area of mathematics." (Andrew McInerney, MAA Reviews, June, 2018)
From the reviews of the first printing
Over the years, there have been several books written to serve as an introduction to symplectic geometry and topology, [...] The text under review here fits well within this tradition, providing a useful and effective synopsis of the basics of symplectic geometry and possibly serving as the springboard for a prospective researcher.
The material covered here amounts to the "usual suspects" of symplectic geometryand topology. From an introductory chapter of symplectic forms and symplectic algebra, the book moves on to many of the subjects that serve as the basis for current research:symplectomorphisms, Lagrangian submanifolds, the Moser theorems, Darboux-Moser-Weinstein theory, almost complex structures, Kahler structures, Hamiltonian mechanics, symplectic reduction, etc.
The text is written in a clear, easy-to-follow style, that is most appropriate in mathematical sophistication for second-year graduate students; [...].
This text had its origins in a 15-week course that the author taught at UC Berkeley. There are some nice passages where the author simply lists some known results and some well-known conjectures, much as one would expect to see in a good lecture on the same subject. Particularly eloquent is the author's discussion of the compact examples and counterexamples of symplectic, almost complex, complex and Kahler manifolds.
Throughout the text, she uses specific, well-chosen examples to illustrate the results. In the initial chapter, she provides a detailed section on the classical example of the syrnplectic structure of the cotangent bundle of a manifold.
Showing a good sense of pedagogy, the author often leaves these examples as well-planned homework assignments at the end of some of the sections. [...] In all of these cases, the author gives the reader a chance to illustrate and understand the interesting results of each section, rather than relegating the tedious but needed results to the reader.
Mathematical Reviews 2002i
Book Information
ISBN 9783540421955
Author Ana Cannas da Silva
Format Paperback
Page Count 220
Imprint Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Publisher Springer-Verlag Berlin and Heidelberg GmbH & Co. KG