Recently Viewed

New

Informed Machine Learning Daniel Schulz 9783031830969

No reviews yet Write a Review
Booksplease Price: £45.92

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9783031830969
Available from Booksplease!
Availability: Usually dispatched within 4 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

This open access book presents the concept of Informed Machine Learning and demonstrates its practical use with a compelling collection of applications of this paradigm in industrial and business use cases. These range from health care over manufacturing and material science to more advanced combinations with deep learning, say, in the form of physical informed neural networks. The book is intended for those interested in modern informed machine learning for a wide range of practical applications where the aspect of small data sets is a challenge.

Machine Learning with small amounts of data? After the recent success of Artificial Intelligence based on training with massive amounts of data, this idea may sound exotic. However, it addresses crucial needs of practitioners in industry. While many industrial applications stand to benefit from the use of AI, the amounts of data needed by current learning paradigms are often hard to come by in industrial settings. As an alternative, learning methods and models are called for which integrate other sources of knowledge in order to compensate for the lack of data. This is where the principle of “Informed Machine Learning” comes into play.

Informed Machine Learning combines purely data driven learning and knowledge-based techniques to learn from both data and knowledge. This has several advantages. It reduces the need for data, it often results in smaller, less complex and more robust models, and even makes machine learning applicable in settings where data is scarce. The kind of knowledge to be incorporated into learning processes can take many different forms, for example, differential equations, analytical models, simulation results, logical rules, knowledge graphs, or human feedback which makes the approach overall very powerful and widely applicable.



Book Information
ISBN 9783031830969
Author Daniel Schulz
Format Hardback
Page Count 400
Imprint Springer International Publishing AG
Publisher Springer International Publishing AG

Reviews

No reviews yet Write a Review

Booksplease  Reviews


J - United Kingdom

Fast and efficient way to choose and receive books

This is my second experience using Booksplease. Both orders dealt with very quickly and despatched. Now waiting for my next read to drop through the letterbox.

J - United Kingdom

T - United States

Will definitely use again!

Great experience and I have zero concerns. They communicated through the shipping process and if there was any hiccups in it, they let me know. Books arrived in perfect condition as well as being fairly priced. 10/10 recommend. I will definitely shop here again!

T - United States

R - Spain

The shipping was just superior

The shipping was just superior; not even one of the books was in contact with the shipping box -anywhere-, not even a corner or the bottom, so all the books arrived in perfect condition. The international shipping took around 2 weeks, so pretty great too.

R - Spain

J - United Kingdom

Found a hard to get book…

Finding a hard to get book on Booksplease and with it not being an over inflated price was great. Ordering was really easy with updates on despatch. The book was packaged well and in great condition. I will certainly use them again.

J - United Kingdom