Description
The text starts with a gentle presentation of the classical notion of foliations, advancing to holomorphic foliations and then holomorphic foliations with singularities. The theory behind reduction of singularities is described in detail, as well the cases for dynamics of a local diffeomorphism and foliations on complex projective spaces. A final chapter brings recent questions in the field, as holomorphic flows on Stein spaces and transversely homogeneous holomorphic foliations, along with a list of open questions for further study and research. Selected exercises at the end of each chapter help the reader to grasp the theory.
Graduate students in Mathematics with a special interest in the theory of foliations will especially benefit from this book, which can be used as supplementary reading in Singularity Theory courses, and as a resource for independent study on this vibrant field of research.
About the Author
Bruno Scardua is a Full Professor at the Federal University of Rio de Janeiro, Brazil. He holds a Master's degree (1992) and a PhD (1994) from the National Institute of Pure and Applied Mathematics (IMPA), Brazil, with postgraduate studies at the University of Valladolid, Spain, and Universite de Rennes I, France. His research interests lie on foliations theory and topology of manifolds.
Book Information
ISBN 9783030767044
Author Bruno Scardua
Format Hardback
Page Count 167
Imprint Springer Nature Switzerland AG
Publisher Springer Nature Switzerland AG