Recently Viewed

New

Handbook of Big Data by Peter Buhlmann

No reviews yet Write a Review
RRP: £71.99
Booksplease Price: £63.00
Booksplease saves you

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9780367330736
MPN:
9780367330736
Available from Booksplease!
Availability: Usually dispatched within 5 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice.

Offering balanced coverage of methodology, theory, and applications, this handbook:

  • Describes modern, scalable approaches for analyzing increasingly large datasets
  • Defines the underlying concepts of the available analytical tools and techniques
  • Details intercommunity advances in computational statistics and machine learning

Handbook of Big Data also identifies areas in need of further development, encouraging greater communication and collaboration between researchers in big data sub-specialties such as genomics, computational biology, and finance.



About the Author

Peter Buhlmann is a professor of statistics at ETH Zurich, Switzerland, fellow of the Institute of Mathematical Statistics, elected member of the International Statistical Institute, and co-author of the book titled Statistics for High-Dimensional Data: Methods, Theory and Applications. He was named a Thomson Reuters' 2014 Highly Cited Researcher in mathematics, served on various editorial boards and as editor of the Annals of Statistics, and delivered numerous presentations including a Medallion Lecture at the 2009 Joint Statistical Meetings, a read paper to the Royal Statistical Society in 2010, the 14th Bahadur Memorial Lectures at the University of Chicago, Illinois, USA, and other named lectures.

Petros Drineas is an associate professor in the Computer Science Department at Rensselaer Polytechnic Institute, Troy, New York, USA. He is the recipient of an Outstanding Early Research Award from Rensselaer Polytechnic Institute, an NSF CAREER award, and two fellowships from the European Molecular Biology Organization. He has served as a visiting professor at the US Sandia National Laboratories; visiting fellow at the Institute for Pure and Applied Mathematics, University of California, Los Angeles; long-term visitor at the Simons Institute for the Theory of Computing, University of California, Berkeley; program director in two divisions at the US National Science Foundation; and worked for industrial labs. He is a co-organizer of the series of workshops on Algorithms for Modern Massive Datasets and his research has been featured in numerous popular press articles.

Michael Kane is a member of the research faculty at Yale University, New Haven, Connecticut, USA. He is a winner of the American Statistical Association's Chambers Statistical Software Award for The Bigmemory Project, a set of software libraries that allow the R programming environment to accommodate large datasets for statistical analysis. He is a grantee on the Defense Advanced Research Projects Agency's XDATA project, part of the White House's Big Data Initiative, and on the Gates Foundation's Round 11 Grand Challenges Exploration. He has collaborated with companies including AT&T Labs Research, Paradigm4, Sybase, (a SAP company), and Oracle.

Mark van der Laan is the Jiann-Ping Hsu/Karl E. Peace professor of biostatistics and statistics at the University of California, Berkeley, USA. He is the inventor of targeted maximum likelihood estimation, a general semiparametric efficient estimation method that incorporates the state of the art in machine learning through the ensemble method super learning. He is the recipient of the 2005 COPPS Presidents' and Snedecor Awards, the 2005-van Dantzig Award, and the 2004 Spiegelman Award. He is also the founding editor of the International Journal of Biostatistics and the Journal of Causal Inference, and the co-author of more than 250 publications and various books.



Reviews

"The book contains a nice mix of philosophical musings, survey articles and cutting-edge research. It was designed as 'a useful resource for seasoned practitioners and enthusiastic neophytes alike' . . . Enthusiastic neophytes are still left with plenty to get their teeth into. In summary, I am happy to recommend the book to those seeking to broaden their understanding of the underpinning methodologies for analysing Big Data." ~ Richard J. Samworth, University of Cambridge, UK

". . . Handbook of Big Data is the first compilation on this emerging subject in our field and is therefore highly recommended to all statisticians and computer scientists."
~The International Biometric Society

"The book strikes a great balance between the breadth and depth of recent research-active topics. It is an excellent reference book to keep for both academic researchers and industrial practitioners. It is also a good reference book for whoever teaches in the area of big data analysis.
~Journal of the American Statistical Association


"The book contains a nice mix of philosophical musings, survey articles and cutting-edge research. It was designed as 'a useful resource for seasoned practitioners and enthusiastic neophytes alike' . . . Enthusiastic neophytes are still left with plenty to get their teeth into. In summary, I am happy to recommend the book to those seeking to broaden their understanding of the underpinning methodologies for analysing Big Data." ~ Richard J. Samworth, University of Cambridge, UK

". . . Handbook of Big Data is the first compilation on this emerging subject in our field and is therefore highly recommended to all statisticians and computer scientists."
~The International Biometric Society

"The book strikes a great balance between the breadth and depth of recent research-active topics. It is an excellent reference book to keep for both academic researchers and industrial practitioners. It is also a good reference book for whoever teaches in the area of big data analysis.
~Journal of the American Statistical Association





Book Information
ISBN 9780367330736
Author Peter Buhlmann
Format Paperback
Page Count 480
Imprint Chapman & Hall/CRC
Publisher Taylor & Francis Ltd
Weight(grams) 453g

Reviews

No reviews yet Write a Review

Booksplease  Reviews


J - United Kingdom

Fast and efficient way to choose and receive books

This is my second experience using Booksplease. Both orders dealt with very quickly and despatched. Now waiting for my next read to drop through the letterbox.

J - United Kingdom

T - United States

Will definitely use again!

Great experience and I have zero concerns. They communicated through the shipping process and if there was any hiccups in it, they let me know. Books arrived in perfect condition as well as being fairly priced. 10/10 recommend. I will definitely shop here again!

T - United States

R - Spain

The shipping was just superior

The shipping was just superior; not even one of the books was in contact with the shipping box -anywhere-, not even a corner or the bottom, so all the books arrived in perfect condition. The international shipping took around 2 weeks, so pretty great too.

R - Spain

J - United Kingdom

Found a hard to get book…

Finding a hard to get book on Booksplease and with it not being an over inflated price was great. Ordering was really easy with updates on despatch. The book was packaged well and in great condition. I will certainly use them again.

J - United Kingdom