❤️ Fall in love with our Valentines Deals! ❤️ ️

Recently Viewed

New

Floquet Theory for Partial Differential Equations by Peter A. Kuchment 9783034896863

No reviews yet Write a Review
Booksplease Price: $177.02

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9783034896863
MPN:
9783034896863
Available from Booksplease!
Availability: Usually dispatched within 12 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Linear differential equations with periodic coefficients constitute a well developed part of the theory of ordinary differential equations [17, 94, 156, 177, 178, 272, 389]. They arise in many physical and technical applications [177, 178, 272]. A new wave of interest in this subject has been stimulated during the last two decades by the development of the inverse scattering method for integration of nonlinear differential equations. This has led to significant progress in this traditional area [27, 71, 72, 111 119, 250, 276, 277, 284, 286, 287, 312, 313, 337, 349, 354, 392, 393, 403, 404]. At the same time, many theoretical and applied problems lead to periodic partial differential equations. We can mention, for instance, quantum mechanics [14, 18, 40, 54, 60, 91, 92, 107, 123, 157-160, 192, 193, 204, 315, 367, 412, 414, 415, 417], hydrodynamics [179, 180], elasticity theory [395], the theory of guided waves [87-89, 208, 300], homogenization theory [29, 41, 348], direct and inverse scattering [175, 206, 216, 314, 388, 406-408], parametric resonance theory [122, 178], and spectral theory and spectral geometry [103 105, 381, 382, 389]. There is a sjgnificant distinction between the cases of ordinary and partial differential periodic equations. The main tool of the theory of periodic ordinary differential equations is the so-called Floquet theory [17, 94, 120, 156, 177, 267, 272, 389]. Its central result is the following theorem (sometimes called Floquet-Lyapunov theorem) [120, 267].

Book Information
ISBN 9783034896863
Author Peter A. Kuchment
Format Paperback
Page Count 354
Imprint Springer Basel
Publisher Springer Basel
Weight(grams) 569g

Reviews

No reviews yet Write a Review

Booksplease  Reviews


J - United Kingdom

Fast and efficient way to choose and receive books

This is my second experience using Booksplease. Both orders dealt with very quickly and despatched. Now waiting for my next read to drop through the letterbox.

J - United Kingdom

T - United States

Will definitely use again!

Great experience and I have zero concerns. They communicated through the shipping process and if there was any hiccups in it, they let me know. Books arrived in perfect condition as well as being fairly priced. 10/10 recommend. I will definitely shop here again!

T - United States

R - Spain

The shipping was just superior

The shipping was just superior; not even one of the books was in contact with the shipping box -anywhere-, not even a corner or the bottom, so all the books arrived in perfect condition. The international shipping took around 2 weeks, so pretty great too.

R - Spain

J - United Kingdom

Found a hard to get book…

Finding a hard to get book on Booksplease and with it not being an over inflated price was great. Ordering was really easy with updates on despatch. The book was packaged well and in great condition. I will certainly use them again.

J - United Kingdom