Description
This 2006 work addresses development and application of continuum-mechanical models that describe the macroscopic response of certain materials.
About the Author
Rohan Abeyaratne is the Quentin Berg Professor and Department Head of Mechanical Engineering at the Massachusetts Institute of Technology. Among his many honors are: E.O.E. Pereira Gold Medal, 1975; Den Hartog Distinguished Educator, 1995; Fellow, American Academy of Mechanics; 1996 Fellow, ASME, 1998; MacVicar Faculty Fellow, 2000. His research focuses include Continuum Mechanics; Finite Elasticity and Plasticity; Material Instability and Non-Equilibrium Behavior of Solids; Stress-Induced Phase Transformations in Solids, and Cavitation. Professor James K. Knowles is the William R. Kenan, Jr. Professor of Applied Mechanics. He received his Ph.D. from the Massachusetts Institute of Technology, D.Sc.h.c., National University of Ireland, and has received the following awards: Goodwin Medal for Effective Teaching, MIT (1955), Award of the Associated Students of Caltech for Excellence in Teaching (1984, 1985), Award of the Caltech Graduate Student Council for Exceptional Teaching (1993); Fellow, American Academy of Mechanics; Fellow, American Society of Mechanical Engineers; President of the American Academy of Mechanics, 1985-86; Eringen Medal, Society of Engineering Science (1991). He is the author of Linear Vector Spaces and Cartesian Tensors (1997) and numerous articles in refereed journals.
Reviews
Review of the hardback: 'Wherever possible, Abeyaratne and Knowles connect phenomenological and experimental results. Aside from comparisons between analytical predictions and experiments on shape-memory wires, the authors use their framework to model experiments involving phase transformations induced by high-speed impact. To some extent, links between atomistic and continuum models for kinetics are also explored. This book is a unique, valuable, and elegantly written contribution to the literature on phase transformations. It should be included in the library of any mechanician, applied mathematician, or material scientist interested in martensitic alloys. Others working on broader classes of phase transformations will also find this book to be worthwhile reading. It is physically well-motivated, mathematically sound, and eminently clear.' Theoretical and Computational Fluid Dynamics
Book Information
ISBN 9780521661478
Author Rohan Abeyaratne
Format Hardback
Page Count 260
Imprint Cambridge University Press
Publisher Cambridge University Press
Weight(grams) 670g
Dimensions(mm) 254mm * 178mm * 16mm