null

Recently Viewed

New

Drift-Driven Design of Buildings: Mete Sozen's Works on Earthquake Engineering Santiago Pujol 9781032246574

No reviews yet Write a Review
RRP: £84.99
£73.85
Booksplease saves you

  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When you buy 3 or more books on Booksplease - Use code: FREEUKDELIVERY in your cart!

SKU:
9781032246574
MPN:
9781032246574
Available from Booksplease!
Availability: Usually dispatched within 5 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

This book summarizes the most essential concepts that every engineer designing a new building or evaluating an existing structure should consider in order to control the damage caused by drift (deformation) induced by earthquakes. It presents the work on earthquake engineering done by Dr. Mete Sozen and dozens of his collaborators and students over decades of experimentation, analysis, and reconnaissance. Many of the concepts produced through this work are integral part of earthquake engineering today. Nevertheless, the connection between the concepts in use today and the original sources is not always explained. Drift-Driven Design of Buildings summarizes Sozen's research, provides common language and notation from subject to subject, provides examples and supporting data, and adds historical context as well as class notes that were the result of Sozen's dedication to teaching. It distills reinforced concrete building design to resist earthquake demands to its essence in a way that no other available book does. The recommendations provided are not only essential but also of the utmost simplicity which is not the result of uninformed neglect of relevant parameters but rather the result of careful consideration and selection of parameters to retain only those that are most critical.

Features:

  • Provides the reader with a clear understanding of the essential features that control the seismic response of RC buildings
  • Describes a simple (perhaps the simplest) seismic design method available
  • Includes the underlying hard data to support and explain the methods described
  • Presents decades of work by one of the most prolific and brilliant civil engineers in the United States in the second half of the 20th century

Drift-Driven Design of Buildings serves as a useful guide for civil and structural engineering students for self-study or in-class learning, as well as instructors and practicing engineers.



About the Author

Santiago Pujol is Professor of Civil Engineering at the University of Canterbury. Prior to moving to New Zealand, he was Professor of Civil Engineering at the Lyles School of Civil Engineering, Purdue University. His experience includes earthquake engineering, evaluation and strengthening of existing structures, response of reinforced concrete to impulsive loads and earthquake demands, instrumentation and testing of structures, and failure investigations. He is a Fellow of the American Concrete Institute (ACI), and member of ACI committees 445 (Torsion and Shear), 314 (Simplified Design), 133 (Disaster Reconnaissance), 318F (Foundations), and 318W (Design for Wind). He is also member of the Earthquake Engineering Research Institute (EERI), associate editor of Earthquake Spectra, and founder of datacenterhub.org (a site funded by the U.S. National Science Foundation and dedicated to the systematic collection of research data). He received the Chester Paul Siess Award for Excellence in Structural Research from ACI, the Educational Award from Architectural Institute of Japan, and the Walter L. Huber Civil Engineering Research Prize from the American Society of Civil Engineers (ASCE).

Ayhan Irfanoglu is a Professor and Associate Head of Civil Engineering at the Lyles School of Civil Engineering, Purdue University. His research and teaching interests are in earthquake engineering, structural dynamics and modeling, engineering seismology, and classical methods of structural analysis. He is a member of ACI committees 314 (Simplified Design) and 133 (Disaster Reconnaissance). He is an associate editor of the ASCE Journal of Performance of Constructed Facilities.

Aishwarya Puranam is Assistant Professor at the Department of Civil Engineering, National Taiwan University. Her research interests are behavior of reinforced concrete, design, evaluation, and retrofit of buildings to resist earthquake demands, and large-scale experiments. She received the President's Fellowship from the American Concrete Institute in 2016, and the Best Dissertation Award from Purdue University in 2018.




Book Information
ISBN 9781032246574
Author Santiago Pujol
Format Hardback
Page Count 296
Imprint CRC Press
Publisher Taylor & Francis Ltd
Weight(grams) 540g

Reviews

No reviews yet Write a Review

Booksplease  Reviews


J - United Kingdom

Fast and efficient way to choose and receive books

This is my second experience using Booksplease. Both orders dealt with very quickly and despatched. Now waiting for my next read to drop through the letterbox.

J - United Kingdom

T - United States

Will definitely use again!

Great experience and I have zero concerns. They communicated through the shipping process and if there was any hiccups in it, they let me know. Books arrived in perfect condition as well as being fairly priced. 10/10 recommend. I will definitely shop here again!

T - United States

R - Spain

The shipping was just superior

The shipping was just superior; not even one of the books was in contact with the shipping box -anywhere-, not even a corner or the bottom, so all the books arrived in perfect condition. The international shipping took around 2 weeks, so pretty great too.

R - Spain

J - United Kingdom

Found a hard to get book…

Finding a hard to get book on Booksplease and with it not being an over inflated price was great. Ordering was really easy with updates on despatch. The book was packaged well and in great condition. I will certainly use them again.

J - United Kingdom