Recently Viewed

New

Dirac Operators in Riemannian Geometry by 9780821820551

No reviews yet Write a Review
RRP: £85.00
Booksplease Price: £81.23
Booksplease saves you 4%

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9780821820551
MPN:
9780821820551
Available from Booksplease!
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Availability: Usually dispatched within 5 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

For a Riemannian manifold $M$, the geometry, topology and analysis are interrelated in ways that are widely explored in modern mathematics. Bounds on the curvature can have significant implications for the topology of the manifold. The eigenvalues of the Laplacian are naturally linked to the geometry of the manifold. For manifolds that admit spin (or $/textrm {spin}^/mathbb{C}$) structures, one obtains further information from equations involving Dirac operators and spinor fields. In the case of four-manifolds, for example, one has the remarkable Seiberg-Witten invariants.In this text, Friedrich examines the Dirac operator on Riemannian manifolds, especially its connection with the underlying geometry and topology of the manifold. The presentation includes a review of Clifford algebras, spin groups and the spin representation, as well as a review of spin structures and $/textrm {spin}^/mathbb{C}$ structures. With this foundation established, the Dirac operator is defined and studied, with special attention to the cases of Hermitian manifolds and symmetric spaces. Then, certain analytic properties are established, including self-adjointness and the Fredholm property. An important link between the geometry and the analysis is provided by estimates for the eigenvalues of the Dirac operator in terms of the scalar curvature and the sectional curvature.Considerations of Killing spinors and solutions of the twistor equation on $M$ lead to results about whether $M$ is an Einstein manifold or conformally equivalent to one. Finally, in an appendix, Friedrich gives a concise introduction to the Seiberg-Witten invariants, which are a powerful tool for the study of four-manifolds. There is also an appendix reviewing principal bundles and connections. This detailed book with elegant proofs is suitable as a text for courses in advanced differential geometry and global analysis, and can serve as an introduction for further study in these areas. This edition is translated from the German edition published by Vieweg Verlag.

Book Information
ISBN 9780821820551
Format Hardback
Imprint American Mathematical Society
Publisher American Mathematical Society

Reviews

No reviews yet Write a Review

Booksplease  Reviews