Recently Viewed

New

Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving Deborah Nolan 9781482234817

No reviews yet Write a Review
RRP: £84.99
Booksplease Price: £76.21
Booksplease saves you 10%

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9781482234817
MPN:
9781482234817
Available from Booksplease!
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Availability: Usually dispatched within 5 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and Computation

Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts approach a problem and reason about different ways of implementing solutions.

The book's collection of projects, comprehensive sample solutions, and follow-up exercises encompass practical topics pertaining to data processing, including:

  • Non-standard, complex data formats, such as robot logs and email messages
  • Text processing and regular expressions
  • Newer technologies, such as Web scraping, Web services, Keyhole Markup Language (KML), and Google Earth
  • Statistical methods, such as classification trees, k-nearest neighbors, and naive Bayes
  • Visualization and exploratory data analysis
  • Relational databases and Structured Query Language (SQL)
  • Simulation
  • Algorithm implementation
  • Large data and efficiency

Suitable for self-study or as supplementary reading in a statistical computing course, the book enables instructors to incorporate interesting problems into their courses so that students gain valuable experience and data science skills. Students learn how to acquire and work with unstructured or semistructured data as well as how to narrow down and carefully frame the questions of interest about the data.

Blending computational details with statistical and data analysis concepts, this book provides readers with an understanding of how professional data scientists think about daily computational tasks. It will improve readers' computational reasoning of real-world data analyses.



About the Author
Deborah Nolan holds the Zaffaroni Family Chair in Undergraduate Education at the University of California, Berkeley. She is a fellow of the American Statistical Association and the Institute of Mathematical Statistics. Her research has involved the empirical process, high-dimensional modeling, and, more recently, technology in education and reproducible research. Duncan Temple Lang is the director of the Data Science Initiative at the University of California, Davis. He has been involved in the development of R and S for 20 years and has developed over 100 R packages. His research focuses on statistical computing, data technologies, meta-computing, reproducibility, and visualization.


Book Information
ISBN 9781482234817
Author Deborah Nolan
Format Paperback
Page Count 540
Imprint Chapman & Hall/CRC
Publisher Taylor & Francis Inc
Weight(grams) 1000g

Reviews

No reviews yet Write a Review

Booksplease  Reviews