Description
A self-contained and accessible guide to probabilistic data modeling, ideal for students and researchers in the natural sciences.
About the Author
Steve Presse is Professor of Physics and Chemistry at Arizona State University, Tempe. His research lies at the interface of Biophysics and Chemical Physics with an emphasis on inverse methods. He is a recipient of a National Science Foundation CAREER award and a Research Corporation 'Molecules come to Life' Fellow. He has extensive experience in teaching data analysis and modeling at both undergraduate and graduate level with funding from the NIH and NSF in data modelling applied to the interpretation of single molecule dynamics and image analysis. Ioannis Sgouralis is Assistant Professor of Mathematics at the University of Tennessee, Knoxville. His research is focused on computational modeling and applied mathematics, particularly the integration of data acquisition with data analysis across biology, chemistry, and physics.
Reviews
'Data Modeling for the Sciences, co-written by a mathematician and molecular scientist, manages to be rigorous, state-of-the-art, and yet accessible all at the same time. Experimentalists faced with complex data sets who need to take their data science to the next level will find this indispensable, and the book forms a great basis for a data science course in physics, chemistry, or biology departments.' Martin Gruebele, James R. Eiszner Chair, University of Illinois at Urbana-Champaign
'This textbook is a foundational treatise that will change how we address our data by educating a generation of students in data-driven tools available nowhere else. A must/required text for the single molecule biophysics field; I'll definitely require my research students to use it.' Shimon Weiss, Department of Chemistry and Biochemistry, University of California, Los Angeles
'This book fills a vacuum that has been growing in the last two decades due to the increasing challenges faced by scientists in the analysis of larger and more complex sets of data. Readers will find the foundations of statistical inference, simulation, and computational modeling formulated in a rigorous yet extremely clear manner. In particular, they will learn how much more powerful a data-driven approach to data analysis can be.' Carlos Bustamante, University of California, Berkeley
'This impressive mathematical treatise lays out a rigorous approach for data analysis and modeling of complex physical systems based on a modern data-centric approach, where noisy measurements are used to extract models for stochastic behavior. Presse and Sgouralis are to be congratulated on the breadth and depth of their presentation.' W. E. Moerner, Stanford University
'The book is targeted at Masters-level students in the sciences, who will typically have the appropriate computational skills that are assumed, but also at more experienced researchers, who will also find it a very valuable resource ... I felt that there was a lot to learn from this book, and I was right, and found it a rewarding read ... I recommend the book strongly for anyone involved with analysis of data with any degree of complexity.' Alan Heavens, The Observatory
Book Information
ISBN 9781009098502
Author Steve Presse
Format Hardback
Page Count 346
Imprint Cambridge University Press
Publisher Cambridge University Press
Weight(grams) 1060g
Dimensions(mm) 262mm * 185mm * 29mm