Recently Viewed

New

Data-Driven Computational Methods: Parameter and Operator Estimations by John Harlim

No reviews yet Write a Review
RRP: £54.99
Booksplease Price: £52.08
Booksplease saves you 5%

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9781108472470
MPN:
9781108472470
Available from Booksplease!
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Availability: Usually dispatched within 4 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Modern scientific computational methods are undergoing a transformative change; big data and statistical learning methods now have the potential to outperform the classical first-principles modeling paradigm. This book bridges this transition, connecting the theory of probability, stochastic processes, functional analysis, numerical analysis, and differential geometry. It describes two classes of computational methods to leverage data for modeling dynamical systems. The first is concerned with data fitting algorithms to estimate parameters in parametric models that are postulated on the basis of physical or dynamical laws. The second is on operator estimation, which uses the data to nonparametrically approximate the operator generated by the transition function of the underlying dynamical systems. This self-contained book is suitable for graduate studies in applied mathematics, statistics, and engineering. Carefully chosen elementary examples with supplementary MATLAB (R) codes and appendices covering the relevant prerequisite materials are provided, making it suitable for self-study.

Describes computational methods for parametric and nonparametric modeling of stochastic dynamics. Aimed at graduate students, and suitable for self-study.

About the Author
John Harlim is a Professor of Mathematics and Meteorology at the Pennsylvania State University. His research interests include data assimilation and stochastic computational methods. In 2012, he received the Frontiers in Computational Physics award from the Journal of Computational Physics for his research contributions on computational methods for modeling Earth systems. He has previously co-authored another book, Filtering Complex Turbulent Systems (Cambridge, 2012).

Reviews
'The MATLAB code used for the examples in the book can be downloaded from the publisher's website; the scripts are short, well commented and can be understood without difficulty (even if you are not a MATLAB expert).' Fabio Mainardi, MAA Reviews
'... this book is useful for students or researchers entering in the topic of data assimilation or interested in statistical and computational methods for stochastic differential equations. It complements nicely other recent books in the field and gives a concise overview of some recent research activity in a very comprehensive style.' Nikolas Kantas, SIAM Review



Book Information
ISBN 9781108472470
Author John Harlim
Format Hardback
Page Count 168
Imprint Cambridge University Press
Publisher Cambridge University Press
Weight(grams) 500g
Dimensions(mm) 253mm * 178mm * 13mm

Reviews

No reviews yet Write a Review

Booksplease  Reviews