Algebraic numbers can approximate and classify any real number. Here, the author gathers together results about such approximations and classifications. Written for a broad audience, the book is accessible and self-contained, with complete and detailed proofs. Starting from continued fractions and Khintchine's theorem, Bugeaud introduces a variety of techniques, ranging from explicit constructions to metric number theory, including the theory of Hausdorff dimension. So armed, the reader is led to such celebrated advanced results as the proof of Mahler's conjecture on S-numbers, the Jarnik-Besicovitch theorem, and the existence of T-numbers. Brief consideration is given both to the p-adic and the formal power series cases. Thus the book can be used for graduate courses on Diophantine approximation (some 40 exercises are supplied), or as an introduction for non-experts. Specialists will appreciate the collection of over 50 open problems and the rich and comprehensive list of more than 600 references.
Graduate text/reference in number theory. Includes comprehensive reference list and 50 open problems.Reviews'The book is written in a relaxed style, and begins with some accessible introductory chapters ... It is nicely written and well explained, and proofs in the main are given in full. this book is certainly suitable for a non-expert in the area, or as a graduate course for an advanced student ... All in all, this is a very nice book.' Bulletin of the London Mathematical Society
Book InformationISBN 9780521823296
Author Yann BugeaudFormat Hardback
Page Count 292
Imprint Cambridge University PressPublisher Cambridge University Press
Weight(grams) 600g
Dimensions(mm) 229mm * 152mm * 21mm