Recently Viewed

New

Applied Neural Networks with TensorFlow 2: PI Oriented Deep Learning with Python by Orhan Gazi Yalcin 9781484265123

No reviews yet Write a Review
RRP: £49.99
Booksplease Price: £33.22
Booksplease saves you 34%

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9781484265123
MPN:
9781484265123
Available from Booksplease!
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Global delivery available
Availability: Usually dispatched within 5 working days

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Implement deep learning applications using TensorFlow while learning the "why" through in-depth conceptual explanations.
You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy-others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.
You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs.
Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively.
What You'll Learn
  • Compare competing technologies and see why TensorFlow is more popular
  • Generate text, image, or sound with GANs
  • Predict the rating or preference a user will give to an item
  • Sequence data with recurrent neural networks
Who This Book Is For
Data scientists and programmers new to the fields of deep learning and machine learning APIs.

About the Author

Orhan Gazi Yalcin is a joint Ph.D. candidate at the University of Bologna & the Polytechnic University of Madrid. After completing his double major in business and law, he began his career in Istanbul, working for a city law firm, Allen & Overy, and a global entrepreneurship network, Endeavor. During his academic and professional career, he taught himself programming and excelled in machine learning. He currently conducts research on hotly debated law & AI topics such as explainable artificial intelligence and the right to explanation by combining his technical and legal skills. In his spare time, he enjoys free-diving, swimming, exercising as well as discovering new countries, cultures, and cuisines.




Book Information
ISBN 9781484265123
Author Orhan Gazi Yalcin
Format Paperback
Page Count 295
Imprint APress
Publisher APress

Reviews

No reviews yet Write a Review

Booksplease  Reviews