Description
Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces.
This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science.
The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.
Book Information
ISBN 9780821853238
Author Tobias Holck Colding
Format Hardback
Page Count 325
Imprint American Mathematical Society
Publisher American Mathematical Society
Weight(grams) 780g