This book can form the basis of a second course in algebraic geometry. As motivation, it takes concrete questions from enumerative geometry and intersection theory, and provides intuition and technique, so that the student develops the ability to solve geometric problems. The authors explain key ideas, including rational equivalence, Chow rings, Schubert calculus and Chern classes, and readers will appreciate the abundant examples, many provided as exercises with solutions available online. Intersection is concerned with the enumeration of solutions of systems of polynomial equations in several variables. It has been an active area of mathematics since the work of Leibniz. Chasles' nineteenth-century calculation that there are 3264 smooth conic plane curves tangent to five given general conics was an important landmark, and was the inspiration behind the title of this book. Such computations were motivation for Poincare's development of topology, and for many subsequent theories, so that intersection theory is now a central topic of modern mathematics.
Forming the basis of a second course in algebraic geometry, this book explains key ideas, each illustrated with abundant examples.About the AuthorDavid Eisenbud is Professor of Mathematics at the University of California, Berkeley, and currently serves as Director of the Mathematical Sciences Research Institute. He is also a Director at Math for America, a foundation devoted to improving mathematics teaching. Joe Harris is Professor of Mathematics at Harvard University.
Reviews'... the book covers an important part of classical algebraic geometry with a modern point of view. It is indeed highly recommendable for a second (or a third) course in algebraic geometry| and more generally, for every mathematician interested in concrete algebraic geometry.' Arnaud Beauville, MathSciNet
Book InformationISBN 9781107602724
Author David EisenbudFormat Paperback
Page Count 603
Imprint Cambridge University PressPublisher Cambridge University Press
Weight(grams) 1140g
Dimensions(mm) 253mm * 176mm * 35mm