Recently Viewed

New

Sub-Riemannian Geometry: General Theory and Examples by Ovidiu Calin 9780521897303

No reviews yet Write a Review
RRP: £134.00
Booksplease Price: £121.98
Booksplease saves you

  Bookmarks: Included free with every order
  Delivery: We ship to over 200 countries from the UK
  Range: Millions of books available
  Reviews: Booksplease rated "Excellent" on Trustpilot

  FREE UK DELIVERY: When You Buy 3 or More Books - Use code: FREEUKDELIVERY in your cart!

SKU:
9780521897303
MPN:
9780521897303

Frequently Bought Together:

Total: Inc. VAT
Total: Ex. VAT

Description

Sub-Riemannian manifolds are manifolds with the Heisenberg principle built in. This comprehensive text and reference begins by introducing the theory of sub-Riemannian manifolds using a variational approach in which all properties are obtained from minimum principles, a robust method that is novel in this context. The authors then present examples and applications, showing how Heisenberg manifolds (step 2 sub-Riemannian manifolds) might in the future play a role in quantum mechanics similar to the role played by the Riemannian manifolds in classical mechanics. Sub-Riemannian Geometry: General Theory and Examples is the perfect resource for graduate students and researchers in pure and applied mathematics, theoretical physics, control theory, and thermodynamics interested in the most recent developments in sub-Riemannian geometry.

A comprehensive text and reference on sub-Riemannian and Heisenberg manifolds using a novel and robust variational approach.

About the Author
Ovidiu Calin is an Associate Professor of Mathematics at Eastern Michigan University and a former Visiting Assistant Professor at the University of Notre Dame. He received his Ph.D. in geometric analysis from the University of Toronto in 2000. He has written several monographs and numerous research papers in the field of geometric analysis and has delivered research lectures in several universities in North America, Asia, the Middle East, and Eastern Europe. Der-Chen Chang is Professor of Mathematics at Georgetown University. He is a previous Associate Professor at the University of Maryland and a Visiting Professor at the Academia Sinica, among other institutions. He received his Ph.D. in Fourier analysis from Princeton University in 1987 and has authored several monographs and numerous research papers in the field of geometric analysis, several complex variables, and Fourier analysis.

Reviews
'... the authors give many interesting examples and applications ... this book will pose a good help to researchers and graduate students.' Zentralblatt MATH



Book Information
ISBN 9780521897303
Author Ovidiu Calin
Format Hardback
Page Count 386
Imprint Cambridge University Press
Publisher Cambridge University Press
Weight(grams) 720g
Dimensions(mm) 234mm * 156mm * 22mm

Reviews

No reviews yet Write a Review

Booksplease  Reviews


J - United Kingdom

Fast and efficient way to choose and receive books

This is my second experience using Booksplease. Both orders dealt with very quickly and despatched. Now waiting for my next read to drop through the letterbox.

J - United Kingdom

T - United States

Will definitely use again!

Great experience and I have zero concerns. They communicated through the shipping process and if there was any hiccups in it, they let me know. Books arrived in perfect condition as well as being fairly priced. 10/10 recommend. I will definitely shop here again!

T - United States

R - Spain

The shipping was just superior

The shipping was just superior; not even one of the books was in contact with the shipping box -anywhere-, not even a corner or the bottom, so all the books arrived in perfect condition. The international shipping took around 2 weeks, so pretty great too.

R - Spain

J - United Kingdom

Found a hard to get book…

Finding a hard to get book on Booksplease and with it not being an over inflated price was great. Ordering was really easy with updates on despatch. The book was packaged well and in great condition. I will certainly use them again.

J - United Kingdom